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Here L (u) is a function which defines the elastic properties of the foundatiob and 
Jo (t, U) is the Bessel function of zero order. For the basic models of the founda - 

tion the behavior of the functionl(u)at infinity and at zero is governed by the foll - 
owing relations : 

L (7.4) = 1 + 0 (u-y, u --f 00; L (u) = 0 (uy), u j 0, y > 1 
The functions r~ (r) must satisfy the free edge conditions at the plate contour 

l--Y dw(r) 
Aw(r)---_ = I 0 

i-=1 

(1.4) 

(here Y is the Poisson’s ratio of the plate material ) 
The conditions (1. 1). (1.2) and (1.4) must be supplemented by the obvious condition 
of statics 

1 

s 

(1.5) 
[P(r) - 4 @)I 7-h = 0 

0 

The boundary value problem just formulated is self-conjugate. This enables 
us to write the deflection functions in the form (41 

w(r) = m$O LOm 0”) 
(1.6) 

Here Q, (r) is a special system of orthonormal polynomials satisfying the boundary 
conditions (1.4 ) . The condition of their orthogonalizationand normalization [5 ] is 
given by 

We have 
‘f+l 

Qo (4 = 1, Qr(r) = 2 Z,(d) rzs+z 
SE0 

(1.8) 

Taking into account the linear character of the problem, we seek the solution 
of the integral equation in the same form as that of the deflection function 

4 (r) = m$o b&VI (r.) 
(1.9) 

The coefficients b, (d, h, p) are round from the equations (1.1) and (1.5 1, using 
the condition (1. 7) 

Ymbm = $ [p V.) - q @)I Qm (r) rdr ( 1.10 1 
0 

Ym = 0 for m = 0, ym = 1 for m > 1 

Substituting the expressions (1.6 ) and (1. 9 ) into the integral equations ( 1. 2 ) , 
we obtain the following integral equation for q,,,‘(r) : 
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1 . s [ 4m (P> 2h 
2-c (1. + PI 

K (c) +F(+, +)jpdp = hpQm (r) (l-l’) 
0 
rQ1, m =o, 1.2, . . . 

2. To solve the itegral equation (1.11. ), we reduce it to an infinite linear 

algebriac system [2,3 1. We write the function F (t, T) of (1.3) in the form of a 

dual series in even Legendre polynomials, and expand the functionsq, (p)and Q,,, (r) 

also into series in Legendre polynomials. Thus we have 
cc m 

F’P\= 
( h’h) cc e,j (A) Pzk (VI - P”) P2j (r/l - rpy) 

k=O j=o 

Using the property of orthogonality 

integral [6 ] 

Rp=O nprr Ic>n$- 2 

of the Legendre polynomials and 

(2.11 

the 

we obtain the following expression for the coefficients ekj (h) ; 

e,j = nh (4k + 1) (4j + 1) ‘2’i ,,~~_!)!!f~i,,,!‘~” 

>i y [I - L (u)J J2k+“, (+) J.tj+t/, (-$) G 
0 

For the coefficients Rkm we have 

R;: = (412 + 1) \ Qm (P) Ps, (1/i - p2) $+ 7 k < m -1. 2 

0” 

Substituting the functions F (t, r), qm (p) and Qrn (r) of the form (2. 1) 

into the integral equation (1. 11) and using the spectral relation [3], 

s 

r PP,, (VI --?I K 21/F dP X2 [(Zm -- I)!!]2 -z- 

0 
1/1-_!12 ( > r + I’ 7. t- r 4 [(2m,!!]2 I)?l,l( r/l -f? 

we obtain an infinite system of linear algebraic equations for the coefficients Sk”’ 

(2.21 
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The system (2. 2) was proved in [3] to be quasi-completely regular for all 0 < h 
< 00 , and it can be solved using the method of reduction. 

Having found the coefficients Sk” (h, d), we complete the solution of the 

problem by substituting the second expression of (2.1) into (1. 10) and solving the in- 
finite system of linear algebraic equations 

Y&m + 5 bsc,m = fm m=O, 1,2, . . . (2.3) 
s=o 

Ym-0 form=O, ym=l formhi 
1 

It can be shown that the ‘;arter system is also quasi-clmpletely regular. 
After determining the coefficients b m the basic parameters of the problem in 

question are determined using the formulas (1.6 ) and (1. 9). Thus the problem reduces 

to that of solving consecutively the systems (2. 2 ) and (2.3 ) of linear algebraic equa- 
tions. 

3. Using the algorithm given above for solving the problem of bending of cir- 
cular plates on a linearly deformable foundation of general type under the simultaneous 
action of the longitudinal and transverse forces, we construct a general numerical 

Algal-60. program. The relative independence of the separate blocks of the program 
makes it possible to change at will the model of the foundation, the form of the load 
p (r), the magnitude of the longitudinal forces T, the relative flexibility /L of the 

plate, the dimensionless parameter h and the accuracy of the final results. 
As an illustration, we consider two models of the elastic foundation. 1) An 

elastic layer of finite thickness H lying without friction on a rigid support, and 2) an 

elastic layer rigidly bound to an undeformable support. The function i <u)for the above 

problems has the form 

1) L (10 = 
cl1 2lC - 1 

sh 2u + 2u 

2) L (u) = 
12x sh 2u - 4u 

2xch2u+l +xs+4u:! 1 x=3-44vl 

Here vr is the Poisson’s ratio of the layer material. 
Computations were performed for various types of load. namely a uniform load, 

a load concentrated at the center, along the edge and concentrated moments along the 
egde. It was found that when the value of the parameter d was fixed, the convergence 

of the method improved with decreasing 1\. . This follows from the fact that when 

h - 0 the first series of (2. 1) becomes divergent along the line t = 7 [?I . The 
computations , however, indicate that when A), 0.5 and p < 30, solutions with 
three significant figures can be secured provided that 4-8 equations are taken in the 

system (2. 2) and 3-6 equations in (2.3 ). In addition, the smaller the value of h and 

the larger the value of uq the greater the number of equations necessary to achieve 

the required accuracy. Increasing the parameter d from zero to 15 the convergence 

of the method improves. Further increase in the value of d or assigning to it negative 
values have a worsening effect. When the values are negative, one must also consider 

the problem of stability of the plate. 
Under the concentrated loads the same effect is observed, but the order of the 
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systems (2.2) and (2.3) is increased by one. 
Computations show that when h > 4 while P and d are arbitrary, the method 

of attachment of the layer to its support ceases to have any appreciable influence on 

the results of the computations of the contact pressure and deflection. When h > 6 the 
problem of bending of a plate on an elastic half-space can be studied as a particular 
case, and the error does not exceed 3qo. The com~tations show good agreement with 
the results of [I]. 

Figures 1 and 2 depict the graphs of the contact pressure 4 (r)for the models 
1) and 2) of foundation under a uniform load P (r) = i, ik = i, v = l/8* VI = 0.3, 

if = G, / (1 - Ye) (G, is the shear modulus of the layer material) and various values of 

p and d. Solid lines correspond to d = i ,and the dashed lines to d = 10 . 

Fig. 3 

The computation results show that the plate becomes more rigid with increasing 
d , and the effect of the tensile (compressive) forces more pronounced with the in - 

creasing flexibility of the plate. The tendency is greater when the layer lies freely on 
a rigid foundation. 

When 1 d I< 0.5 , the results of the com~tations for p (r) and r~ (r) prac - 
tically coincide with the results obtained for the problem of bending of a plate under 
the action of a vertical load [7 - 91, i. e. when 1 d 1 < 0.5 , the tensile (compressive) 
forces can be neglected. 
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